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The particle number and energy fluctuations in the system of charged particles are studied in the
canonical ensemble for non-zero net values of the conserved charge. In the thermodynamic limit the
fluctuations in the canonical ensemble are different from the fluctuations in the grand canonical one.
The system with several species of particles is considered. We calculate the quantum statistics effects
which can be taken into account for the canonical ensemble fluctuations in the infinite volume limit.
The fluctuations of the particle numbers in the pion-nucleon gas are considered in the canonical
ensemble as an example of the system with two conserved charges – baryonic number and electric
charge.

I. INTRODUCTION

The statistical model approach turns out to be rather successful in describing the data on the particle production
in relativistic nuclear collisions (see e.g. Ref. [1] and recent review [2]). This stimulates further investigation of the
properties of the statistical models. In particular, an applicability of various statistical ensembles is an interesting
issue. The canonical ensemble (CE) [3] or even the microcanonical ensemble (MCE) [4] have been used in order to
describe the pp, pp̄ and e+e− collisions when a small number of secondary particles are produced. At these conditions
the statistical systems are far away from the thermodynamic limit, so that the statistical ensembles are not equivalent,
and the exact charge or both energy and charge conservation laws have to be taken into account. The grand canonical
ensemble (GCE) formulation is valid when the system volume V tends to infinity. All statistical ensemble become
then thermodynamically equivalent.

The analysis of the fluctuations is a useful tool to study the properties of the system created during high energy
particle and nuclear collisions (see e.g. Refs. [5, 6, 7]). An essential part of the total fluctuations measured on the
event-by-event basis is expected to be the thermal ones. The particle number fluctuations have been recently studied
in the CE [8] and MCE [9] and compared with those in the GCE. It has been shown that these fluctuations are different
in various statistical ensembles in the particular case of the relativistic ideal gas with a total net charge equal zero in
the Boltzmann statistics approximation. The fluctuations of negatively and positively charged particles are suppressed
in the CE [8] in comparison to the fluctuations in the GCE. This suppression remains valid in the thermodynamic
limit too, so that the well-known equivalence of all statistical ensembles refers to the average quantities, but does not
apply to the fluctuations.

In Ref. [8] we have studied the CE for one particle specie and zero net value of the conserved charge. In the present
paper we extend our consideration. In the high energy proton-proton and nucleus-nucleus collisions the created system
has some positive values of the baryonic number and electric charge. Besides, a lot of different species of hadrons
are created. We study the CE particle number fluctuations (Secs. II and III) and energy fluctuations (Sec. IV) in the
systems with non-zero net charge and several species of particles. As the electric charge of hadrons can be both ±1
and ±2, we consider the CE system of single and double charged particles in Sec V. The effects of Bose and Fermi
statistics are studied in the thermodynamic limit in Sec. VI. We also calculate in Sec.VII the CE particle number
fluctuations for the ideal pion-nucleon gas which is an example of the system with two conserved charges – baryonic
number and electric charge. We summarize our consideration and formulate the conclusions in Sec. VIII.

II. THE GCE AND CE PARTITION FUNCTIONS AND MEAN PARTICLE MULTIPLICITIES

Let us start with the multi-species system of +1 and −1 charged particles. In applications of the statistical approach
to hadron production in high energy collisions the conserved charge under consideration can be the electric charge
and baryonic number, or strangeness and charm, which are also conserved in the strong interactions. In the case of
the Boltzmann ideal gas (i.e. the interactions and quantum statistics effects are neglected) the partition function in
the GCE reads:
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Zg.c.e.(V, T, µ) =

∞∑

N1+, N1−=0

...

∞∑

Nj+, Nj−=0

...
(λ1+z1)

N1+

N1+!

(λ1−z1)
N1−

N1−!
...

(λj+zj)
Nj+

Nj+!

(λj−zj)
Nj−

Nj−!
...

=
∏

j

∞∑

Nj+, Nj−=0

(λj+zj)
Nj+

Nj+!

(λj−zj)
Nj−

Nj−!
=
∏

j

exp (λj+zj + λj−zj) = exp
[

2z cosh
(µ

T

)]
, (1)

where j numerates the spesies, λj± = exp(±µ/T ), zj is a single particle partition function

zj =
gjV

2π2

∫ ∞

0

k2dk exp

[
−

(k2 + m2
j)

1/2

T

]
=

gjV

2π2
T m2

j K2

(mj

T

)
, (2)

and z ≡ ∑j zj . The V , T and µ are respectively the system volume, temperature and chemical potential connected
with the conserved charge Q. The gj and mj are respectively the degeneracy factors and masses for the j-th particle
species, and K2 is the modified Hankel function. The CE partition function is obtained by an explicit introduction
of the charge conservation constrain,

∑
j (Nj+ − Nj−) = Q , for each microscopic state of the system:

Zc.e.(V, T, Q) =

∞∑

N1+, N1−=0

...

∞∑

Nj+, Nj−=0

...
(λ1+z1)

N1+

N1+!

(λ1−z1)
N1−

N1−!
...

(λj+zj)
Nj+

Nj+!

(λj−zj)
Nj−

Nj−!
...

× δ [(N1+ + ... + Nj+ + ... − N1− − ... − Nj− − ...) − Q] =

∫ 2π

0

dφ

2π

∏

j

∞∑

Nj+,Nj−=0

(λj+zj)
Nj+

Nj+!

(λj−zj)
Nj−

Nj−!

× exp [i (Nj+ − Nj− − Q)φ] =

∫ 2π

0

dφ

2π
exp


−i Q φ +

∑

j

zj

(
λj+ eiφ + λj− e−iφ

)

 = IQ(2z) . (3)

Parameters λj+ and λj− in the CE (3) are only auxiliary parameters introduced in order to calculate the mean
number and the fluctuations of positively and negatively charged particles. They are set to one in the final formulas.
In Eq. (3) the integral representations of the δ-Kronecker symbol and the modified Bessel function were used [10]:

δ(n) =

∫ 2π

0

dφ

2π
exp(inφ) , IQ(2z) =

∫ 2π

0

dφ

2π
exp[−i Q φ + 2z cosφ] . (4)

The averages of Nj+ and Nj− in both the GCE and CE can be presented as (in the final expressions one should
put λj± = exp(±µ/T ) and λj± = 1 for the GCE and CE, respectively):

〈Nj±〉 =

(
λj±

∂ ln Z

∂λj±

)
= a± zj , (5)

where a± in Eq. (5) is

ag.c.e.
± = exp

(
±µ

T

)
, ac.e.

± =
IQ∓1(2z)

IQ(2z)
, (6)

for the GCE and CE, respectively. The average number of N+ and N− are equal to:

〈N±〉 = 〈
∑

j

Nj±〉 = a±

∑

j

zj = a± z . (7)

The mean net charge in the GCE is equal to:

Q = 〈N+〉g.c.e. − 〈N−〉g.c.e. = 2 sinh
(µ

T

)
z . (8)

which leads to a simple relation which connects the values of Q and µ

exp
( µ

T

)
=

Q

2z
+

√

1 +

(
Q

2z

)2

≡ y +
√

1 + y2 , (9)
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so that

〈N±〉g.c.e. = z
(
y +

√
1 + y2

)±1

, (10)

where y ≡ Q/2z = sinh(µ/T ).
In the CE an exact charge conservation is imposed on each microscopic state, so that it is evidently fulfilled also

for the average values:

〈N+〉c.e. − 〈N−〉c.e. = z
IQ−1(2z)

IQ(2z)
− z

IQ+1(2z)

IQ(2z)
= Q , (11)

as indeed can be easily seen from the identity In−1(x) − In+1(x) = 2nIn(x)/x [10].
The ratios of 〈N±〉 calculated in the CE and in the GCE,

〈N±〉c.e.

〈N±〉g.c.e.
=

IQ∓1(2z)

IQ(2z)
·
(
y +

√
1 + y2

)∓1

, (12)

are shown in Fig. 1 for Q = 0 and Q = 2. There is the strong canonical suppression effect, 〈N±〉c.e. ≪ 〈N±〉g.c.e., for
small systems (z ≪ 1), and the canonical and grand canonical ensembles become equivalent, 〈N±〉c.e. = 〈N±〉g.c.e., in
the thermodynamic limit z → ∞. One can see that the CE suppression effect is reduced for a non-zero net charge
of the system as compared to a system with zero net charge. In Fig. 2 the ratios (12) as functions of Q = 1, 2, ... are
shown at fixed positive values of y = Q/2z which correspond to the fixed positive net charge number densities (Q = 0
corresponds to y = 0 and is presented in Fig. 1). Small values of y mean large z, e.g. for y = 0.1 shown in Fig. 2 one
finds ‘large’ z = 5 at Q = 1, so that the system is already close to the thermodynamic limit. Due to this the canonical
suppression is small and it is the same for positive and negative particles. The case of large y differs, e.g. for y = 2
shown in Fig. 2 the values of z are ‘small’ at small Q: z = 0.25 at Q = 1. The canonical suppression effect becomes
strong for negative particles at small Q. However, the canonical suppression at large y is negligible for the average
value of positive particle number as it should be approximately equal to Q.

For small systems (z ≪ 1) using the series expansion [10]

In(2z) =
zn

n!
+

zn+2

(n + 1)!
+ O

(
zn+4

)
, (13)

one finds for Q = 0

〈N±〉c.e. ≃ z2 ≪ 〈N±〉g.c.e. = z , (14)

and for Q ≥ 1

〈N+〉c.e. ≃ Q , 〈N+〉c.e. ≃ 〈N+〉g.c.e. ; (15)

〈N−〉c.e. ≃ z2

Q + 1
, 〈N−〉c.e. ≃ Q

Q + 1
〈N−〉g.c.e. . (16)

In the large volume limit (V → ∞ corresponds also to z → ∞) the mean quantities in the CE and GCE are equal.
This result is referred to as an equivalence of the canonical and grand canonical ensembles. Using the uniform limit
of the modified Bessel function [10]

lim
n→∞

In(nx) =
1√
2πn

exp (ηn)

(1 + x2)1/4

[
1 + O

(
1

n

)]
, (17)

where

η =
√

1 + x2 + log
x

1 +
√

1 + x2
, (18)

one can easily find (note that fixed Q at z → ∞ means a zero value of the net charge density and y = 0):

〈N±〉c.e. ≃ z
(
y +

√
1 + y2

)±1

= 〈N±〉g.c.e. . (19)

The total multiplicity of charged particles is defined as Nch = N+ + N−. Its average in the GCE and CE reads:

〈Nch〉g.c.e. ≡ 〈 N+ + N− 〉g.c.e. = 〈N+〉g.c.e. + 〈N−〉g.c.e. = 2z cosh
( µ

T

)
, (20)

〈Nch〉c.e. ≡ 〈N+ + N− 〉c.e. = 〈N+〉c.e. + 〈N−〉c.e. = z

[
IQ−1(2z)

IQ(2z)
+

IQ+1(2z)

IQ(2z)

]
. (21)
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FIG. 1: The ratios of the mean particle numbers in the CE to those in the GCE as functions of z for Q = 0 and Q = 2.
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FIG. 2: The ratios of the mean particle numbers in the CE to those in the GCE as functions of Q = 1, 2, 3, ... for fixed values
of y = Q/2z.
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III. THE SCALED VARIANCE

A useful measure of the fluctuations of any variable X is the ratio of its variance V (X) ≡ 〈X2〉 − 〈X〉2 to its
mean value 〈X〉, referred here as the scaled variance:

ωX ≡ 〈X2〉 − 〈X〉2
〈X〉 . (22)

Note, that ωX = 1 for the Poisson distribution. In order to study the fluctuations of charged particle numbers the
second moments of the multiplicity distribution have to be calculated. One finds:

〈N2
j±〉 =

1

Z

[
λj±

∂

∂λj±

(
λj±

∂ Z

∂λj±

)]
= a± zj + b± z2

j , (23)

〈Nj+Nj−〉 =
λj+λj−

Z

∂2 Z

∂λj+∂λj−
= z2

j , (24)

where a± is given by Eq. (6) and

bg.c.e.
± = exp

(
±2µ

T

)
=
(
ag.c.e.
±

)2
, bc.e.

± =
IQ∓2(2z)

IQ(2z)
, (25)

in the GCE and CE, respectively. The scaled variances ωj ± and ωj ch are equal to:

ωj ± ≡
〈N2

j+〉 − 〈Nj+〉2
〈Nj+〉

= 1 − zj

(
a± − b±

a±

)
, (26)

ωj ch ≡ 〈(Nj+ + Nj−)2〉 − 〈Nj+ + Nj−〉2
〈Nj+ + Nj−〉

= 1 + zj

[
b+ + b− + 2

a+ + a−

− (a+ + a−)

]
, (27)

The Eqs. (26-27) describe the particle number fluctuations of a given specie j . One can establish the general rule
how to calculate the fluctuations of N± =

∑
j Nj± and Nch = N+ +N−. To do this one should set λ1± = λ2± = · · · =

λ± in Eqs. (1,3) and differentiate with respect to λ± in Eqs. (5,23) in order to get 〈Nn
±〉 (n = 1, 2). This eventually

results in a substitution of z instead of zj in all final formulas for the averages and fluctuations. One obtains:

ω±
g.c.e. = ωch

g.c.e. = 1 . (28)

ω±
c.e. = 1 − z

[
IQ∓1(2z)

IQ(2z)
− IQ∓2(2z)

IQ∓1(2z)

]
, (29)

ωch
c.e. = 1 + z

[
IQ−2(2z) + IQ+2(2z) + 2IQ(2z)

IQ−1(2z) + IQ+1(2z)
− IQ−1(2z) + IQ+1(2z)

IQ(2z)

]
. (30)

The scaled variances ω±
c.e and ωch

c.e calculated with Eqs. (29) and (30) are shown in Fig. 3 for Q = 0, Q = 2 and in
Fig. 4 for fixed positive values of y. Using the asymptotic behavior of the modified Bessel function for z → 0, Eq. (13),
and z, Q → ∞ with y = Q/2z = const, Eqs. (17-18), the limits of the scaled variances can be easily found, both for a
given particle specie j and for the sum over all particle species:
1). A small system limit z → 0 gives for Q = 0

ωj +
c.e. = ω−

c.e. ≃ 1 − zjz

2
, ω+

c.e. = ω−
c.e. ≃ 1 − z2

2
, (31)

ωj ch
c.e. ≃ 1 +

zj

z
− zjz , ωch

c.e. ≃ 2 − z2 , (32)

and for Q ≥ 1

ωj +
c.e.

∼= 1 − zj

z
+

zjz

Q(Q + 1)
, ω+

c.e.
∼= z2

Q(Q + 1)
, (33)

ωj −
c.e.

∼= 1 − zjz

(Q + 1)(Q + 2)
, ω−

c.e.
∼= 1 − z2

(Q + 1)(Q + 2)
, (34)

ωj ch
c.e.

∼= 1 − zj

z
+

4 zjz

Q(Q + 1)
, ωch

c.e.
∼= 4 z2

Q(Q + 1)
. (35)
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FIG. 3: The scaled variances ω±
c.e. (29) and ωch

c.e. (30) as functions of z for fixed values of the conserved charge Q.

2 4 6 8 10

y = 0.1

+

-

ch

Q
0

1

0.5

 

 

2 4 6 8 10

+

-

ch

y = 0.5

Q
0

0.5

1

 

 

2 4 6 8 10Q

1

0.5

0

+

-

ch

y = 1

 

 

 

 

2 4 6 8 10Q

+

-

ch

0

1

0.5

y = 2

 

 

 

 
FIG. 4: The scaled variances ω±

c.e. (29) and ωch
c.e. (30) as functions of Q = 1, 2, 3, ... for fixed values of y = Q/2z.



7

2). A large system limit z → ∞ gives for fixed Q (note again that fixed Q in the thermodynamic limit z → ∞
means a zero value of the net charge density and leads, therefore, to y = 0)

ωj ±
c.e. ≃ 1 − zj

2z
+

zj

8z2
∓ Qzj

4z2
, ω±

c.e. ≃ 1

2
+

1

8z
∓ Q

4z
, (36)

ωj ch
c.e. ≃ 1 +

zj

4z2
, ωch

c.e. ≃ 1 +
1

4z
, (37)

and for fixed Q/2z = y

ωj ±
c.e. ≃ 1 − zj

2z
∓ zj

2z

y√
1 + y2

, ω±
c.e. ≃ 1

2
∓ y

2
√

1 + y2
, (38)

ωj ch
c.e. ≃ 1 − zj

z

y2

1 + y2
, ωch

c.e. ≃ 1

1 + y2
. (39)

As one sees from Eqs. 3-4 the scaled variances reach very fast their asymptotic values. In Fig. 3 the scaled variances
for Q = 0 and Q = 2 can be compared (for Q = 0 see details in Ref. [8]). One notices that their values at z → ∞ are
the same, but the behavior at small values of z is different. Namely, if Q ≥ 1 the fluctuations of positively charged
particles are very small at small z, while the fluctuations of the negatively charged particles have the Poisson width.
This can be easy understood as for small volumes the average number of positive particles is approximately equal to
Q (see Eq. (15)) and the fluctuations of N+ are small. On the other hand, at small z and fixed Q the average number
of negatively charged particles is much smaller than Q (see Eq. (16)) and the fluctuations of N− are not affected by
the conservation law. Similar physical reasons explain the behavior of the fluctuations at non-zero charge density in
the thermodynamic limit. The Fig. 4 demonstrates the following features of the asymptotic values of ω+

c.e. and ω−
c.e.

at Q ≫ 1. When the charge density becomes larger (y increases) the ω+
c.e. decreases and tends to 0 at y → ∞, while

the ω−
c.e. increases and tends to 1 at y → ∞. The physical reasons of this are seen from Eq. (19) which at y ≫ 1 gives:

〈N+〉c.e. ≃ z · 2y = Q and 〈N−〉c.e. ≃ z · (2y)−1 = Q · (4y2)−1 ≪ Q. Therefore, at y ≫ 1 an exact charge conservation
keeps N+ close to its average value Q and makes the fluctuations of N+ in the CE to be small. Under the same
conditions, 〈N−〉c.e. is much smaller than Q, so that the fluctuations of N− are not affected by the CE suppression
effects and has the Poisson form. These features of the CE are in a striking difference with those in the GCE. The
GCE scaled variances (28) are equal to 1 for N−, N+ and Nch, and this remains valid for all values of the system net
charge or net charge density.

IV. ENERGY FLUCTUATIONS

The partition function in the GCE and CE is equal to Z ≡
∑

exp(−E/T ), where the sum over microstates includes
the summation (integration) over particle momenta and summation over number of particles and over different particle
species. Each microscopic state has the weight factor

∏
j exp[(µNj+ −µNj−)/T ] in the GCE (1)and δ[Q−

∑
j(Nj+ −

Nj−)] in the CE (3). In order to calculate the average energy and its fluctuations it is convenient to rewrite the
partition function as Z =

∑
exp[

∑
j(βj+Ej+ + βj−Ej−)/T ], where βj+ and βj− are the auxiliary parameters and

βj+ = βj− = β ≡ 1/T in the final formulas. It then follows:

〈Ej±〉 = − 1

Z

∂Z

∂βj±
= − a±z

′

j ≡ 〈εj〉〈Nj±〉, (40)

〈Ei±Ej±〉 =
1

Z

∂2Z

∂βi±βj±
= a±z

′′

j δij + b±z
′

iz
′

j , (41)

〈Ei+Ej−〉 =
1

Z

∂2Z

∂βi+βj−
= z

′

iz
′

j , (42)

where z
′

j = ∂zj/∂β, z
′′

j = ∂2zj/∂β2, and zj, a±, b± are given by Eqs. (2,6,25), respectively. In Eq. (40) we have intro-

duced the average value of one-particle energy 〈εj〉 ≡ −z
′

j/zj. Introducing also 〈ε2
j〉 ≡ z

′′

j /zj the energy fluctuations
can be then presented as:

W j± ≡
〈E2

j±〉 − 〈Ej±〉2
〈Ej±〉

=
〈ε2

j〉 − 〈εj〉2
〈εj〉

+ 〈εj〉 ωj± , (43)
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where ωj± is given by Eq. (26). Introducing the total energies E± ≡∑j Ej± and Ech ≡∑j(Ej+ + Ej−), one finds:

W± ≡ 〈E2
±〉 − 〈E±〉2
〈E±〉

=
〈ε2〉 − 〈ε〉2

〈ε〉 + 〈ε〉 ω± , (44)

W ch ≡ 〈E2
ch〉 − 〈Ech〉2
〈Ech〉

=
〈ε2〉 − 〈ε〉2

〈ε〉 + 〈ε〉 ωch , (45)

where 〈ε〉 ≡ ∑
j zj〈εj〉/z, 〈ε2〉 ≡ ∑

j〈ε2
j〉zj/z. The Eqs. (44-45) are valid in both the GCE and CE. The energy

fluctuations consist of two terms. The first term takes into account the fluctuations of one-particle energies, the
second one – the fluctuations of the number of particles. Most often the fluctuations of the number of particles are
relatively more important than the fluctuations of one-particle energies. Indeed, the maximal value of the first term
in the right hand side of Eqs. (44-45) is equal to 〈ε〉/3 for the particles with m/T → 0, and it decreases and goes to
zero at m/T → ∞. On the other hand, the second term in the right hand side of Eqs. (44-45) is equal to 〈ε〉 for any
system in the GCE. The value of (〈ε2〉 − 〈ε〉2)/〈ε〉 in Eqs. (44-45) is the same for “+”and “-” particles, and in both
the GCE and CE. The values of ω’s are however different in the GCE and CE. Besides, the ω+

c.e., ω−
c.e. and ωch

c.e. are
different from each other for the non-zero net charge Q. Therefore, the scaled variances of the energy fluctuations are
different in the GCE and CE, and in the CE the values of W+, W− and W ch differ from each other and depend on
the net charge of the system. An example of the energy fluctuations W+, W− and W ch for the ideal pion gas with
Q = 0 and Q = 2 is presented in Fig. 5. One sees that the dependences of the energy fluctuations W+, W− and W ch

on z in the CE resemble those for ω+
c.e., ω−

c.e. and ωch
c.e. shown in Fig. 3.
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FIG. 5: The CE energy fluctuation W +, W− and W ch in the ideal pion gas at temperature T = 120 MeV.

The upper horizontal dotted line in Fig. 5 shows the value of 〈ε2〉/〈ε〉 which corresponds to the W+ = W− = W ch

in the GCE. The lower horizontal dotted line in Fig. 5 shows the value of (〈ε2〉 − 〈ε〉2)/〈ε〉 which is the fluctuations
of one-pion energy.

V. SINGLE AND DOUBLE CHARGED PARTICLES

In the following sections we consider the extension of the CE formalism. First, let us study the system of particles
and antiparticles with charges ±1 and ±2. The CE partition function reads:

Zc.e.(V, T, Q) =

∞∑

N+,N−,Ñ+,Ñ−=0

(λ+z)
N+

N+!

(λ−z)
N−

N−!

(
λ̃+z̃

)Ñ+

Ñ+!

(
λ̃−z̃

)Ñ−

Ñ−!
δ
[(

N+ − N− + 2Ñ+ − 2Ñ−

)
− Q

]

=

∫ 2π

0

dφ

2π
exp

[
−i Q φ + z

(
λ+ eiφ + λ− e−iφ

)
+ z̃

(
λ̃+ ei2φ + λ̃− e−i2φ

)]
=

∞∑

k=−∞

IQ−2k(2z) Ik(2z̃) , (46)
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where we have used the relation exp
[
x
(
t + 1

t

)]
=
∑∞

k=−∞ tkIk(2x) . The z and z̃ in Eq. (46) are the one-particle
partition functions for charges ±1 and ±2, respectively. In terms of variables cm± (m = 1, 2, 4)

cm± =

∑∞

k=−∞ IQ∓m−2k(2z) Ik(2z̃)∑∞

k=−∞ IQ−2k(2z) Ik(2z̃)
, (47)

one finds:

〈N±〉c.e. = c1± z , 〈Ñ±〉c.e. = c2± z̃ , (48)

〈N2
±〉c.e. = c1± z + c2± z2, 〈Ñ2

±〉c.e. = c2± z̃ + c4± z̃2 . (49)

From Eqs. (48-49) it follows:

ω±
1 c.e. ≡ 〈N2

±〉c.e. − 〈N±〉2c.e.

〈N±〉 c.e.

= 1 − z

(
c1± − c2±

c1±

)
, (50)

ω±
2 c.e. ≡ 〈Ñ2

±〉c.e. − 〈Ñ±〉2c.e.

〈Ñ±〉c.e.

= 1 − z̃

(
c2± − c4±

c2±

)
, (51)

ω±
c.e. ≡

〈
(
N± + Ñ±

)2

〉c.e. − 〈N± + Ñ±〉2c.e.

〈N± + Ñ±〉c.e.

= 1 +
z2c2± + z̃2c4± + 2zz̃c3±

zc1± + z̃c2±
− (zc1± + z̃c2±) . (52)

To illustrate the specific features of the considered system we present the CE results in the case Q = 0 . As always,

all ω’s are equal to 1 in the GCE. For 〈Q〉g.c.e. = 0 one also has 〈N±〉g.c.e. = z and 〈Ñ±〉g.c.e. = z̃. To calculate
Eqs. (48–52) for finite values of z and z̃ one can effectively use Eq. (47). In the thermodynamic limit V → ∞ both
z → ∞ and z̃ → ∞. In this case it is convenient to return to the integral over φ representation in Eq. (46) and use it

also for the derivatives of the CE partition function with respect to λ± and λ̃±. Using the saddle point method to
calculate the φ-integrals one finds then for z, z̃ ≫ 1:

〈N±〉c.e. ≃ z

[
1 − 1

4(z + 4z̃)

]
, 〈Ñ±〉c.e. = z̃

(
1 − 1

z + 4z̃

)
; (53)

ω±
1 c.e. ≃ 1 − z

2(z + 4z̃)
, ω±

2 c.e. ≃ 1 − 2z̃

z + 4z̃
, ω±

c.e. ≃ 1 − (z + 2z̃)2

2(z + z̃)(z + 4z̃)
. (54)

From the above formulas one finds that ω±
c.e. ≃ 0.5 if z̃/z is either much smaller or much larger than 1. The scaled

variance ω±
c.e. has a maximum at z = 2z̃ . At this point one finds ω±

c.e. = 5/9, ω±
1 c.e. = 5/6 and ω±

2 c.e. = 2/3.

VI. QUANTUM STATISTICS EFFECTS

It is instructive to apply a different technique [7] to calculate the fluctuations of the thermodynamical quantities
with the exact conservation laws imposed. This method allows to find the values of the CE fluctuations in the
thermodynamic limit and include the effects of quantum statistics.

The ideal quantum gas of the identical Bose or Fermi particles and antiparticles can be characterized by the
occupation numbers n±

p of the one-particle states labeled by momenta p. The GCE average values and fluctuations
are [11]:

〈n±
p 〉g.c.e. =

1

exp
[(√

p2 + m2 ∓ µ
)

/T
]

− γ
, (55)

〈∆n±2
p 〉g.c.e. ≡ 〈

(
n±

p

)2〉g.c.e. − 〈n±
p 〉2g.c.e. = 〈n±

p 〉g.c.e.

(
1 + γ〈n±

p 〉g.c.e.

)
≡ v±2

p , (56)

where γ is equal to +1 and −1 for Bose and Fermi statistics, respectively (γ = 0 corresponds to the Boltzmann
approximation). These expressions are microscopic in a sense that they describe the average values and fluctuations
of a single mode with momentum p. However, the average values of all macroscopic quantities of the system can
be determined through the average occupation numbers of these single modes. The fluctuations of the macroscopic

observables can be written in terms of the microscopic correlator 〈∆nα
p ∆nβ

k 〉g.c.e., where α, β are + and(or) −. This
correlator can be presented as:

〈∆nα
p ∆nβ

k〉g.c.e. = vα2
p δp k δαβ , (57)
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due to the statistical independence of different quantum levels and different charge states in the GCE. The variances
of the total number of (negatively) positively charged particles Nα =

∑
p nα

p are equal to:

〈∆N2
α〉g.c.e. ≡ 〈N2

α〉g.c.e. − 〈Nα〉2g.c.e. =
∑

p,k

(
〈nα

p nα
k 〉g.c.e. − 〈nα

p 〉g.c.e.〈nα
k 〉g.c.e.

)
=
∑

p,k

〈∆nα
p ∆α

k 〉g.c.e. =
∑

p

vα2
p .

We have assumed above that the quantum p-levels are non-degenerate. In fact each level should be further specified
by the projection of a particle spin. Thus, each p-level splits into g = 2j + 1 sub-levels. It will be assumed that the
p-summation includes all these sub-levels too. The degeneracy factor enters explicitly when one substitutes, in the
thermodynamic limit, the summation over discrete levels by the integration:

∑

p

... =
gV

2π2

∫ ∞

0

p2dp ... .

The scaled variance ωα
g.c.e. in the thermodynamical limit V → ∞ reads:

ωα
g.c.e. ≡

〈N2
α〉g.c.e. − 〈Nα〉2g.c.e.

〈Nα〉g.c.e.
=

∑
p,k〈∆nα

p ∆nα
k 〉g.c.e.∑

p〈nα
p 〉g.c.e.

=

∑
p vα2

p∑
p〈nα

p 〉g.c.e.
≃

∫∞

0
p2dp vα2

p∫∞

0
p2dp 〈nα

p 〉g.c.e.

. (58)

The Eq. (58) corresponds to the particle number fluctuations in the GCE. To illustrate the role of quantum statistics
let us consider the case of µ = 0, i.e. 〈Q〉g.c.e. = 0, where Q ≡ ∑

p,α qαnα
p . In what follows we assume q+ = 1 and

q− = −1, however, the formulas below are valid for any values of q+ and q− = −q+. From Eqs. (56) and (58) one
finds ω±Boltz

g.c.e. = 1 in the Boltzmann limit (γ = 0), ω±Bose
g.c.e. > 1 for the Bose particles (γ = 1) and ω±Fermi

g.c.e. < 1 for the
Fermi particles (γ = −1). The strongest quantum effects correspond to m/T → 0:

ω±Boltz
g.c.e. = 1, ω±Bose

g.c.e. =
π2

6 ζ(3)
≃ 1.368 , ω±Fermi

g.c.e. =
π2

9 ζ(3)
≃ 0.912 . (59)

The scaled variance ωch
g.c.e. for all charged particles can be easily obtained from (58) by replacing

∑
p →∑

p α , and
one finds:

ωch Boltz
g.c.e. = ω±Boltz

g.c.e. , ωch Bose
g.c.e. = ω±Bose

g.c.e. , ωch Fermi
g.c.e. = ω±Fermi

g.c.e. . (60)

The formula for the microscopic correlator is modified if we impose the exact charge conservation in our equilibrated
system. For this purpose we introduce the equilibrium probability distribution W (nα

p ) of the occupation numbers. As
a first step we assume that each nα

p fluctuates independently according to the Gauss distribution law with the average

value 〈nα
p 〉g.c.e. (55) and the mean square deviation vα2

p (56):

W (nα
p ) ∝

∏

p,α

exp

[
−
(
∆nα

p

)2

2vα2
p

]
. (61)

To justify this assumption (see Ref. [7]) one can consider the sum of nα
p in small momentum volume (∆p)

3
with the

center at p. At fixed (∆p)
3

and V → ∞ the average number of particles inside (∆p)
3

becomes large. Each particle

configuration inside (∆p)
3

consists of (∆p)
3 ·V/(2π)3 ≫ 1 statistically independent terms, each with the average value

〈nα
p 〉g.c.e. (55) and the scaled variance vα2

p (56). From the central limit theorem it then follows that the probability

distribution for the fluctuations inside (∆p)
3

should be Gaussian. In fact, we always convolve nα
p with some smooth

function of p, so instead of writing the Gaussian distribution for the sum of nα
p in (∆p)3 we can use it directly for nα

p .
The average value of the conserved charge Q =

∑
p,α qαnα

p is regulated in the GCE by the chemical potential µ. If

we impose an exact charge conservation, ∆Q =
∑

p,α qα∆nα
p = 0, the distribution (61) will be modified as:

W (nα
p ) ∝

∏

p,α

exp

[
−
(
∆nα

p

)2

2vα2
p

]
δ

(
∑

p,α

qα∆nα
p

)
∝
∫ ∞

−∞

dλ
∏

p,α

exp

[
−
(
∆nα

p

)2

2vα2
p

+ iλ qα∆nα
p

]
. (62)

It is convenient to generalize distribution (62) to W (nα
p , λ) using further the integration along imaginary axis in the

λ-plane. After completing squares one gets:

W (nα
p , λ) ∝

∏

p,α

exp

[
−
(
∆nα

p − λvα2
p qα

)2

2vα2
p

+
λ2

2
vα2

p qα2

]
, (63)
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and the average values are now calculated as:

〈...〉 =

∫ i∞

−i∞
dλ
∫∞

−∞

∏
p,α dnα

p ... W (nα
p , λ)

∫ i∞

−i∞ dλ
∫∞

−∞

∏
p,α dnα

p W (nα
p , λ)

. (64)

The Eq. (64) has the meaning of the CE averaging in the thermodynamic limit V → ∞. One easily finds

〈(∆nα
p − vα2

p λqα)(∆nβ
k − vβ2

k λqβ)〉 = δp k δαβ vα2
p , 〈λ2〉 = −

(
∑

p,α

vα2
p qα2

)−1

, 〈(∆nα
p − vα2

p λqα)λ〉 = 0 ,

so that it follows:

〈∆nα
p ∆nβ

k 〉 = δp k δαβ vα2
p − vα2

p qα vβ2
k qβ 〈λ2〉 + 〈∆nα

p λ〉 vβ2
k qβ + 〈∆nβ

kλ〉 vα2
p qα (65)

= δp k δαβ vα2
p + vα2

p qα vβ2
k qβ 〈λ2〉 = δp k δαβ vα2

p −
vα2

p qα vβ2
k qβ

∑
p,α vα2

p qα2 .

By means of Eq. (65) we obtain:

ωα
c.e. ≡ 〈N2

α〉 − 〈Nα〉2
〈Nα〉

=

∑
p vα2

p∑
p〈nα

p 〉g.c.e.
−

(∑
p vα2

p qα
)2

∑
p〈nα

p 〉g.c.e.

∑
p,α vα2

p qα2
. (66)

The Eq. (55) leads to vα2
p = 〈nα

p 〉g.c.e. in the Boltzmann approximation, so that from Eq. (66) one finds (y ≡ Q/2z =
sinh(µ/T )):

ωα
c.e. = 1 − exp(αµ/T )

exp(µ/T ) + exp(−µ/T )
=

1

2
− α

y

2
√

1 + y2
, (67)

which coincides with Eq. (38). Formula ωch
c.e. can be obtained from (66) after replacing

∑
p →∑

p,α , and it is the

same as Eq. (39). At µ = 0 from Eq. (66) we find the CE scaled variances:

ω±Boltz
c.e. =

1

2
, ω±Bose

c.e. =
π2

12 ζ(3)
≃ 0.684 , ω±Fermi

c.e. =
π2

18 ζ(3)
≃ 0.456 , (68)

ωch Boltz
c.e. = 2 ω±Boltz

g.c.e. , ωch Bose
c.e. = 2 ω±Bose

c.e. , ωch Fermi
c.e. = 2 ω±Fermi

c.e. . (69)

As seen from Eqs. (59,68) the scaled variance of (negative) positive particles with Bose or Fermi statistics in the
CE is as half as large as the corresponding scaled variances in the GCE. Therefore, the CE suppression of the particle
number fluctuations in the thermodynamic limit works at µ = 0 in the quantum systems similar to that in the
Boltzmann case. This result can be rephrased in another way: the Bose enhancement and Fermi suppression of
the GCE fluctuations remain the same in the CE for the ω±

c.e. at µ = 0 in the thermodynamic limit. The Eq. (69)
demonstrates that the scaled variances of all charged particles in the CE for any statistics are by a factor of 2 larger
than the corresponding scaled variances for (negative) positive particles, whereas in the GCE these scaled variances
presented by Eq. (60) are equal to each other.

Comparing Eq. (65) and Eq. (57) one notices the changes of the microscopic correlator due to an exact charge

conservation. Namely, in the CE the fluctuations of each mode is reduced, i.e. the 〈
(
∆nα

p

)2〉 calculated from Eq. (65)
is smaller than that in Eq. (56), and the anticorrelations between different modes p 6= k and the same charge states
α = β appear. These two changes of the microscopic correlator result in a suppression of the CE scaled variances ωα

c.e.

in a comparison with the GCE ones ωα
g.c.e. (compare Eq. (66) and Eq. (58)). Therefore, the fluctuations of both N−

and N+ are always suppressed in the CE. As we have seen in the previous sections the behavior of Nch fluctuations in
the CE can be more complicated. This is because of the correlations of different modes p 6= k for the different charge
states α = −β (i.e. the second term in the right hand side of Eq. (65) is positive for α = −β).

The exact charge conservation should also lead to the canonical suppression of 〈nα
p 〉, and this should result in the

canonical suppression effects for 〈Nα〉. They are, however, absent in the present formulation, so that formula (65)
for the microscopic correlator is not enough to calculate 〈N2

α〉 and 〈Nα〉2 separately with an accuracy corresponding

to the effects of the canonical suppression. Nevertheless, it does allow us to calculate their difference 〈(∆Nα)
2〉

with the effects of the CE correctly included. This means that the canonical suppression effects in the occupation
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numbers 〈nα
p 〉 lead to the changes of the order of 〈Nα〉 in both 〈N2

α〉 and 〈Nα〉2, but these changes are the same

and the correction terms are cancelled in the calculation of 〈(∆Nα)2〉. Therefore, the macroscopic fluctuations of
multiplicities are not affected by the CE corrections to the average particle numbers. The scaled variances of the CE
in the thermodynamic limit V → ∞ feel the consequences of an exact charge conservation due to the suppression of

the single mode fluctuations 〈
(
∆nα

p

)2〉 and due to the (anticorrelations ) correlations between different modes p 6= k
with the (same) different charge states α, β. All these effects are absent in the GCE.

VII. A SYSTEM WITH TWO CONSERVED CHARGES

In the previous sections we have considered the system with one conserved charge. In high energy collisions the
measurements of fluctuations for the particle numbers and (transverse) energies are mainly done for electrically charged
hadrons. Therefore, in applications of the CE results to an analysis of the data on fluctuations it would be reasonable
to start with the case when the charge Q is assumed to be an electric charge. On the other hand, other conserved
charges are also present in the system created in high energy collisions. In this section we consider the system with two
exactly conserved charges – electric charge Q and baryonic number B. As an example we study the ideal pion-nucleon
gas and neglect the quantum statistics effects. This is the simplest realistic case where we can study the influence of
an exact B conservation to the CE fluctuations of the electrically charged particles. The partition function of this
system in the CE is:

Zc.e.(V, T, Q, B) =
∞∑

Np, Np̄=0

∞∑

Nn, Nn̄=0

∞∑

Nπ, Nπ̄=0

(λpzp)
Np

Np!

(λp̄zp̄)
Np̄

Np̄!

(λnzn)
Nn

Nn!

(λn̄zn̄)
Nn̄

Nn̄!

(λπ+zπ)
N

π+

Nπ+ !

(λπ−zπ)
N

π−

Nπ− !

× δ [ (Np − Np̄ + Nπ+ − Nπ−) − Q ] δ [ (Np − Np̄ + Nn − Nn̄) − B ]

=

∫ 2π

0

dϕ

2π

∫ 2π

0

dφ

2π
exp ( −i Q ϕ − i B φ ) × exp

[
zp

(
λp ei(ϕ+φ) + λp̄ e−i(ϕ+φ)

)]

× exp
[
zn

(
λn eiφ + λn̄ e−iφ

)]
× exp

[
zπ

(
λπ+ eiϕ + λπ− e−iϕ

)]
=

∞∑

k=−∞

Ik−Q(2zp) Ik+B−Q(2zn) Ik(2zπ) , (70)

where we have used that exp[x(t + 1/t)] =
∑∞

k=0 tk Ik(2x) . From Eq. (70) it follows:

〈Nj,α〉c.e. = cj
1,α zj , 〈N2

j,α〉c.e. = cj
1,α zj + cj

2,α z2
j , (71)

where j numerates pion, neutron and proton, α = 1 corresponds to particles π+, n, p and α = −1 to antiparticles
π−, n, p, and (m = 1, 2)

cp
m,α =

∞∑

k=−∞

Ik+α·m−Q(2zp) Ik+B−Q(2zn) Ik(2zπ) × [Zc.e.(V, T, Q, B)]
−1

, (72)

cn
m,α =

∞∑

k=−∞

Ik−Q(2zp) Ik+α·m+B−Q(2zn) Ik(2zπ) × [Zc.e.(V, T, Q, B)]
−1

, (73)

cπ
m,α =

∞∑

k=−∞

Ik+α·m−Q(2zp) Ik+α·m+B−Q(2zn) Ik(2zπ) × [Zc.e.(V, T, Q, B)]
−1

. (74)

Formulas for the cross-averages 〈NiNj〉 can be obtained in the similar manner. The calculations with Eqs. (72-74)
are effective for small systems. In this case the k-sums in the above equations converge rapidly and small number
of terms lead to the accurate results. In the limit of large system volume we can use another technique, similar to
that developed in the previous section. This leads to simple analytical results. Using this method one can obtain,
for example, the scaled variances for (negatively) positively charged particles in the thermodynamic limit. The same
pictures can be obtained directly from Eqs. (72-74) by numerical calculations at zp, zn, zπ ≫ 1 .

First, we consider the case when the electric charge Q is exactly conserved and the baryonic number B conservation
is treated within the GCE. This results in:

ω±
Q = 1 −

z±p + z±π
zpxp + zπxπ

, (75)
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where

z±j = zj exp
(
±µj

T

)
, xj = exp

(µj

T

)
+ exp

(
−µj

T

)
, (76)

and the chemical potentials µj are equal to µp = µQ + µB for protons and µπ = µQ for π+−mesons. When both
Q and B are exactly conserved, the CE scaled variances of (negatively) positively charged particles are equal to:

ω±
Q,B = 1 −

z± 2
p (znxn + zπxπ) + z± 2

π (zpxp + znxn) + 2z±p z±π znxn

(z±p + z±π ) (zpxpznxn + zpxpzπxπ + znxnzπxπ)
, (77)

where xn = exp(µB/T ) + exp(−µB/T ). Let us repeat that both ω±
Q (75) and ω±

Q,B (77) are obtained in the thermo-

dynamic limit V → ∞. The ω±
Q (75) corresponds to the CE for electric charge and the GCE for baryonic number.

The ω±
Q,B (77) corresponds the CE for both conserved charges. It is easy to prove that ω±

Q,B ≤ ω±
Q , i.e. an additional

exact conservation law reduces the fluctuations. However, the additional CE suppression of the scaled variances of
(negatively) positively charged particles due to the exact baryonic number conservation is rather small. We have
plotted (75) and (77) in Fig. 6 for µQ = 0 to study the influence of baryon charge conservation on the fluctuations of
electrically charged particles. As one can see from Fig. 6 the exact CE baryonic charge conservation leads to a little

0 500 1000 1500
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ch
Q

-

-

QB

Q

Q= 0

+

+
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FIG. 6: The scaled variances ω+

Q,B (dashed line) and ω−

Q,B (dashed-dotted line) given by Eq. (77). The dotted lines show the

scaled variances ω+

Q and ω−

Q given by Eq. (75). The solid line presents the scaled variance for all charged particles ωch
Q . The

results correspond to T = 120 MeV.

additional suppression and does not change the result ω+ = ω− = 0.5 for zero values of the baryonic and electric
net charges. Moreover, one can prove that at zero net charges any ideal Boltzmann gas with two exactly conserved
charges (i.e. for any combination of particle charges and their masses) leads to the scaled variances equal to ω± = 0.5
in the thermodynamic limit.

On the other hand, Fig. 6 demonstrates a strong dependence of the ω+
Q and ω−

Q values on the net baryonic density,
it is not important whether the baryonic number treated within the CE or the GCE. The matter is that in the pion-
nucleon gas the electric charge equals to Q = Np − Np̄ + Nπ+ − Nπ− . At µB ≃ 0 the electric charge of the system
is close to zero. Then one finds ω+

Q ≃ ω−
Q ≃ 0.5 (compare to Fig. 4 at y = 0.1). The µB > 0 leads to 〈Np〉 > 〈Np̄〉,

and this means a non-zero electric charge of the system. In this case an exact electric charge conservation leads to
ω−

Q > ω+
Q (see Fig. 4). At µB ≫ T the electric charge density becomes large due to 〈Np〉/〈Np̄〉 ≫ 1, so that ω+

Q → 0

and ω−
Q → 1 (compare to Fig. 4 at y = 2).
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VIII. SUMMARY AND CONCLUSIONS

We have considered the particle number and energy fluctuations for different systems within the canonical ensemble
formulation. The results are compared to those in the grand canonical ensemble. We have studied the system with
arbitrary number of different particle species and non-zero net charge in Secs. II and III. An exact charge conservation
reduces the values of N+ and N− fluctuations in the thermodynamic limit. At the non-zero net charge Q the canonical
ensemble predicts a difference for the fluctuations of N+ and N−, they also different from the fluctuations of all charged
particles Nch = N+ + N−. All these features of the canonical ensemble are in a striking difference with those in the
grand canonical ensemble. We have demonstrated in Sec. IV that the energy fluctuations of the system are mainly
determined by the fluctuations of the number of particles and have the same volume dependence. Therefore, the
energy fluctuations are rather different in the canonical and grand canonical ensembles. We extend our canonical
ensemble results and calculate the particle number fluctuations in the system of single and double charged particles
in Sec. V, include the quantum statistics effects in Sec. VI, study the systems with two conserved charges in Sec. VII.

The canonical ensemble suppression effects for the charged particle multiplicities are well known, and they are
successfully applied to the statistical description of hadron production in high energy collisions [3]. The canonical
ensemble formulation explains, for example, the suppression in a production of strange hadrons and antibaryons
in small systems, i.e. when the total numbers of strange particles or antibaryons are small. This consideration
demonstrates a difference of the canonical and grand canonical ensembles – the statistical ensembles are not equivalent
for small systems. When the size of the system increases all average quantities in both ensembles become equal. It
means that in the thermodynamic limit V → ∞ the canonical ensemble and grand canonical ensemble are equivalent.
Results of Ref. [8] and the present study demonstrate that there are also the canonical ensemble effects for the
fluctuations. In contrast to the canonical suppression of average multiplicities, the canonical effects for the multiplicity
fluctuations do survive at V → ∞ and they are even most clearly seen in the thermodynamic limit. The changes of
the scaled variances due to an exact charge conservation of the canonical ensemble are not small (about 50 percent
effects) and they are in general different for positively, negatively and all charged particles. To observe these new
canonical ensemble effects in an analysis of the data on multiparticle production, several points should be clarified.
To use the condition of an exact charge conservation one has to apply it to the system of all secondary hadrons
formed in high energy collisions, and this should be done on the event-by-event basis as we are interested in the
system fluctuations. In the experimental study only a fraction of produced particles with the conserved charges is
detected. Introducing a probability q that a single particle is accepted in the detector a simple relation between the
scaled variance of the accepted particles, ωacc, and the scaled variance of all particles in the statistical ensemble, ω,
was obtained [8]: ωacc = q · ω + (1 − q). To observe the real event-byevent fluctuations ω one needs q ≃ 1, otherwise
if q ≪ 1 one always obtains ωacc ≃ 1 and makes a wrong conclusion that the fluctuations correspond to the Poisson
distribution. This fact is of a very general origin, and because of relatively small experimental acceptance a large
part of the event-by-event fluctuations in high energy multiparticle production is lost. To observe many interesting
event-by-event fluctuations, for example, due to the QCD critical point (see, e.g. [12] and references therein), one
should accept an essential part of all secondary particles. In this case the role of an exact charge conservation would
increase. It would also have a strong influence on an extraction of the so called dynamical fluctuations (see Ref. [6])
from the event-by-event data.
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